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La science quantique

Une vision singulière

VI) Densités  

et statistiques

P.A. Besse
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PAB Philosophie de calcul: exemple !

(E) = nombre d’appartements à chaque étage E

F(E) = taux de personnes en moyenne
par appartement 

c(E) = consommation moyenne par personne

La Grande Motte

Combien de pain pour nourrir cet immeuble ?
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PAB Deux exemples d’utilisation
en physique

Concentration d’électrons libres dans un semi-conducteur:

Puissance totale émise par un corps noir par surface et angle d’émission:
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PAB

Densités d’états

3D
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PAB Densité d’états de même norme de K

2 3(4 ) /Kn K dK K   

L
K

2


La densité d’états avec la même norme de K: 

3
2

3

1
4

2
K

K

n
dK K dK

L
 


       
 

2 2
n L K n

L

 


     

 Réseau régulier



p.6.8 “Densités, statistiques et applications”Pierre-André Besse 2025

PAB Densité d’états pour les électrons

La densité d’états avec la même norme de K: 

Dispersion: 
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PAB Densité d’états pour les photons

La densité d’états avec la même norme de K: 

Dispersion: 
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PAB Résumé des densités 3D

Photons
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PAB Exemple
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PAB

Densité d’états électroniques

2D et 1D
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PAB

Lz

Quantum Wells (2D)
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PAB Quantum Wells (2D)
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PAB Densité électronique 2D
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PAB

Lz

Quantum Wells (2D)
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PAB Densité d’états électroniques 2D
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PAB Quantum Wires (1D)
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PAB Quantum Wires (1D)
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PAB Densité électronique 1D
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La densité d’états avec la même norme de K: 

1K
K

n
dK dK

L



   

L
K

2


*
1

, 2
,

1 1

2
D
E e

n m

m
dE dE

E E



   



2 2

,* *

2
n mdE K dK E E dK

m m
    
 

2
2

, 2n m
e

E E K
m

 


,si n mE E

1

m
 
  

Kx

dKdK



p.6.27 “Densités, statistiques et applications”Pierre-André Besse 2025

PAB Densité électronique 1D
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PAB Densité d’états électroniques 1D
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PAB

Densité d’états photoniques

2D et 1D
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PAB Densité photonique 2D
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PAB
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Densité photonique 2D
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PAB Densité d’états photoniques 2D 
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PAB Densité photonique 1D

2 /Kn dK K  

La densité d’états avec la même norme de K: 
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PAB Densité photonique 1D
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PAB Densité d’états photoniques 1D
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PAB Résumé
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PAB

Statistiques et

taux d’occupation
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PAB Exemples:
évènements identiques et indépendants 

1 mesure par 0.1sec
p=80% de «bip»
k= 25 mesures

Loi binomiale
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1 mesure par ms
p=0.8% de «bip»
k= 2’500 mesures
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Poisson
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PAB Loi binomiale

- k essais indépendants
- Chaque essai a une probabilité p de réussite

Probabilité d’obtenir n réussites = loi binomiale
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PAB Exemples: binomiale 20n 
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PAB Poisson distribution

We use the limits:
(Poisson distribution) 
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PAB Statistique de Poisson

Moyenne du nombre de réussites:

Variance du nombre de réussites:
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PAB Exemples: Binomiale et Poisson  20n 
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PAB Exemples: Poisson  
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PAB

Statistique

de Boltzmann
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PAB Statistique de Boltzmann 

.i
i

N n const 

.i i
i

U n E const  

Toutes les configurations ont la même probabilité, mais elles doivent 
maintenir constants le nombre d’atomes et l’énergie totale.
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Toutes les particules sont distinctes mais identiques.
Les niveaux d’énergie sont identiques.
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PAB Statistique de Boltzmann pour des atomes

Probabilité d’occupation de l’état d’énergie En:
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PAB Exemples:  Boltzmann
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PAB

Statistique

de Bose-Einstein
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PAB Statistique de Bose-Einstein pour les photons

Probabilité d’occupation d’un état d’énergie:
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PAB Statistique de Bose-Einstein pour les photons

Energie
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PAB Bose-Einstein comparé à Poisson
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PAB

Statistique

de Fermi-Dirac
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PAB Statistique de Fermi-Dirac

- État non-occupé ou occupé par un seul électron
- Chaque état a une probabilité p d’être occupé
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de Fermi
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«0» «0» «0» «0» «0»

Probabilité d’occupation:

( )
f

E
E kT
kT

b E E

kT kT

e
p f E e

e e






 
   



  ( )

1

1
fe FD E E

kT

F E F

e
 



Statistique de Fermi-Dirac  (FD)

Etats



p.6.72 “Densités, statistiques et applications”Pierre-André Besse 2025

PAB Exemples: Fermi-Dirac
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PAB Comparaison: Fermi-Dirac    - Boltzmann
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PAB

La science quantique

Une vision singulière

Applications

P.A. Besse
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PAB

Semiconducteurs:

Concentrations de porteurs
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PAB Principe de calcul
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PAB Concentration 
d’électron libre et de trous
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Concentration d’électrons libre dans les bandes de conduction:

Concentration de trous dans les bandes de valence:
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Remarques: - Ces équations sont aussi valides pour un semi-conducteur dopé

- Un paramètre est pour l’instant libre: l’énergie de Fermi EF. 
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PAB Concentration: résolution graphique
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PAB

Métaux:

Concentration de porteurs

à T=0K
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PAB Schéma de bande parabloique
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PAB Métaux à T=0K

Concentration de porteurs libres à T=0K:
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PAB

Photons et 

loi de Planck

Exemple en photonique
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PAB Black Body

The spectrum of a black body depends only on its temperature and geometry
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PAB Puissance spectrale 
par surface et angle d’émission

Principe de calcul:
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PAB
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PAB Example: Planck’s Law
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PAB Example: Black-body

b) Total power emitted per solid angle and area

300K 6000K

4
totP T

Loi de Stefan-Boltzmann
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PAB

Densité de porteurs dans le graphène

Autres exemples en matériaux

Densité d’états 2D: 2 2   D
K dK K dK

Taux d’occupation:

Principe d’exclusion  Fermi-Dirac ( )
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PAB

Quantum Point Contact

Exemple 1D
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PAB Quantum Point Contact: principle
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PAB Quantum Point Contact: principle

VQ

V0

W diminue (jusqu’à disparaitre) plus VQ est négatif
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[q
2 /

h]



p.6.102 “Densités, statistiques et applications”Pierre-André Besse 2025

PAB Quantum Point Contact: principle
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PAB Quantum Point Contact: principle
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PAB Conductance quantique
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PAB

Courant:   0QPC QI G V V 

Quantum Point Contact: principle

fixe
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PAB

Courant:   0,QPC Q eI G V N V 

Quantum Point Contact: principle

Mesure «non-démolition» fixe

QPC

0V

QbiasV

QPCI

W=0

0
QbiasV

QPCI

Courant

 A

QV0
QbiasV

W=0

22q

h



p.6.108 “Densités, statistiques et applications”Pierre-André Besse 2025

PAB Exemple: Spin qubit
mesure par Quantum Point Contact (QPC)

Dot rarement occupé

Dot souvent occupé

Nombreux échanges

Dot occupé Dot vide

Large barrière
peu d’échanges

Faible barrière
Nombreux échanges
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PAB

• Conductivité électrique

• Répartition des vitesses dans un gaz parfait

• Vibrations cristallines: phonons

• Capacité et conductivité thermique

• Pouvoir thermoélectrique, effet Peltier

• Effet Hall, magnétorésistance, paramagnétisme de Pauli

• Piezorésistance (jauge de contrainte)

• Bruit thermique d’une résistance

• Pression de Casimir

• …

Autres exemples 
avec le même schéma de calcul
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PAB Pression de Casimir
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PAB Pression de Casimir

Analogie

B. C. Denardo, J. J. Puda, and A. Larraza, 
"A water wave analog of the Casimir effect" 
American Journal of Physics, Vol. 77, 
Iss. 12, pp. 1095 (2009); https://dx.doi.org/10.1119/1.3211416

U. Mohideen, Anushree Roy, Precision “Measurement of the 
Casimir Force from 0.1 to 0.9 mm”, Vol. 81, Num. 21, 
PHYSICAL REVIEW LETTERS 23, nov 1998, p.4549


